https://www.selleckchem.com/products/PP121.html
This article proposes a novel network model to achieve better accurate residual binarized convolutional neural networks (CNNs), denoted as AresB-Net. Even though residual CNNs enhance the classification accuracy of binarized neural networks with increasing feature resolution, the degraded classification accuracy is still the primary concern compared with real-valued residual CNNs. AresB-Net consists of novel basic blocks to amortize the severe error from the binarization, suggesting a well-balanced pyramid structure without downsampling c