https://www.selleckchem.com/MEK.html
Automatic classification of glaucoma from fundus images is a vital diagnostic tool for Computer-Aided Diagnosis System (CAD). In this work, a novel fused feature extraction technique and ensemble classifier fusion is proposed for diagnosis of glaucoma. The proposed method comprises of three stages. Initially, the fundus images are subjected to preprocessing followed by feature extraction and feature fusion by Intra-Class and Extra-Class Discriminative Correlation Analysis (IEDCA). The feature fusion approach eliminates between-class correlation whil