https://www.selleckchem.com/pr....oducts/bgj398-nvp-bg
Osteoarthritis (OA) is the most common joint disease associated with pain and disability. OA patients are at a high risk for venous thrombosis (VTE). Here, we developed an interpretable machine learning (ML)-based model to predict VTE risk in patients with OA. To establish a prediction model, we used six ML algorithms, of which 35 variables were employed. Recursive feature elimination (RFE) was used to screen the most related clinical variables associated with VTE. SHapley additive exPlanations (SHAP) were applied to interpret