https://www.selleckchem.com/pr....oducts/TG100-115.htm
In this paper, we explain about the mathematical structure of the classifier, which is not designed to be used as a fully automated diagnosis tool but as a support system for medical experts. We also report on the accuracy of the classifier against real world histopathological data for colorectal cancer. We also tested the acceptability of the system through clinical trials by 14 pathologists. We show that the proposed classifier is comparable to state of the art neural networks in accuracy, but more importantly it is more acceptable