https://www.selleckchem.com/products/h2dcfda.html
Networks provide a mathematically rich framework to represent social contacts sufficient for the transmission of disease. Social networks are often highly clustered and fail to be locally treelike. In this paper, we study the effects of clustering on the spread of sequential strains of a pathogen using the generating function formulation under a complete cross-immunity coupling, deriving conditions for the threshold of coexistence of the second strain. We show that clustering reduces the coexistence threshold of the second strain and it