https://www.selleckchem.com/products/etc-1002.html
Optical neuromonitoring provides insight into neurovascular physiology and brain structure and function. These methods rely on spectroscopy to relate light absorption changes to variation of concentrations of physiologic chromophores such as oxy- and deoxyhemoglobin. In clinical or preclinical practice, data quality can vary significantly across wavelengths. In such situations, standard spectroscopic methods may perform poorly, resulting in data loss and limiting field-of-view. To address this issue, and thereby improve the robustness