https://www.selleckchem.com/
Deep learning networks can be applied to the field of intelligent prediction of part surface roughness. However, the surface roughness samples of parts have the problems of high collection cost, unbalanced categories, and complicated data distribution, which inevitably limit the application of deep learning network models in the field of intelligent prediction of part surface roughness. To solve these problems, this article proposes a novel data augmentation method based on CoralGAN for prediction of part surface roughness, which introduces the domain adapt